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Abstract

Lichnerowicz–Jacobi cohomology of Jacobi manifolds is reviewed. The use of the associated Lie
algebroid allows to prove that the Lichnerowicz–Jacobi cohomology is invariant under conformal
changes of the Jacobi structure. We also compute the Lichnerowicz–Jacobi cohomology for a large
variety of examples.
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1. Introduction

Since their introduction by Lichnerowicz in[18,19], Poisson and Jacobi manifolds have
deserved a lot of interest in the mathematical physics literature. Indeed, the need to use
more general phase spaces for Hamiltonian systems lead to the consideration of Poisson
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jcmarrer@ull.es (J.C. Marrero), mepadron@ull.es (E. Padrón).

0393-0440/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(02)00056-6



508 M. de Léon et al. / Journal of Geometry and Physics 44 (2003) 507–522

brackets of non-constant rank, and, more than this, brackets which do not satisfy Leibniz
rule (Jacobi brackets).

From the viewpoint of differential geometry, both structures are of great interest. The local
and global structures of Poisson and Jacobi manifolds were elucidated by several authors
([4,9,11,28]; see also[1,16,25]). A Poisson manifold is basically made of symplectic pieces,
but the structure of a Jacobi manifold is more complicated, and it is made of pieces which
are contact or locally conformal symplectic manifolds.

The Poisson structure of a Poisson manifoldM allows to define some cohomology op-
erators. Indeed, the Poisson bivector ofM determines the so-called Lichnerowicz–Poisson
cohomology (LP cohomology) and the 1-differentiable Chevalley–Eilenberg cohomology,
which can be alternatively described as the cohomologies of two subcomplexes of the
Chevalley–Eilenberg complex associated with the Lie algebra of differentiable functions
endowed with its Poisson bracket (see[18]). Computation of Poisson cohomology is gen-
erally quite difficult. For regular Poisson manifolds and for the Lie–Poisson structure on
the dual space of the Lie algebra of a compact Lie group, some results were obtained in
[6,7,24,30]. On the other hand, we remark that thekth LP cohomology group has interesting
interpretations for the first few values ofk. Moreover, these cohomology groups allow to
describe important results about the geometric quantization and the deformation quantiza-
tion of Poisson manifolds (for more information, we refer to[25] and to the recent survey
[29]; see also the references therein).

The situation for a Jacobi manifoldM is more involved. Note that the Jacobi bracket
of functions onM is a linear skew-symmetric 2-differential operator of order 1 or, in
other words, a 1-differentiable 2-cochain in the Chevalley–Eilenberg complex of the Lie
algebra of functions. Imitating the Poisson case, for a Jacobi manifold, one can con-
sider the representation of the Lie algebra of functions on itself given by the Jacobi
bracket. The resultant cohomology, the Chevalley–Eilenberg cohomology, was studied
by Guédira and Lichnerowicz[9] and Lichnerowicz[19]. Particularly, they studied the
1-differentiable Chevalley–Eilenberg cohomology, that is, the cohomology of the subcom-
plex of the Chevalley–Eilenberg complex which consists of the 1-differentiable cochains.
But there is a second possibility considering the representation of the Lie algebra of functions
on itself given by the action of the Hamiltonian vector fields. The resultant cohomology was
termed by the authors, in[14,15], the H–Chevalley–Eilenberg cohomology. As in the case of
the Chevalley–Eilenberg complex, one can consider also the cohomology of the subcomplex
of the 1-differentiable cochains which was called the Lichnerowicz–Jacobi cohomology,
LJ cohomology, for brevity (see[14,15]). For a Poisson manifold, the Chevalley–Eilenberg
cohomology and the H–Chevalley–Eilenberg cohomology coincide and the 1-differentiable
Chevalley–Eilenberg cohomology is just the LJ cohomology. The H–Chevalley–Eilenberg
cohomology and the LJ cohomology of a Jacobi manifoldM play an important role in the
geometric quantization ofM and in the study of the existence of prequantization represen-
tations for complex line bundles overM (for more details, see[14,15]).

The LJ cohomology can be also described using the Lie algebroid associated with the
Jacobi manifold. Indeed, it is just the Lie algebroid cohomology with trivial coefficients
(see[14,15,26]).

In this paper we review this cohomology theory obtaining new properties about it. So,
thinking about the intrinsic conformal character of the Jacobi structures (the Hamiltonian
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vector fields of a Jacobi manifold are conformal Jacobi transformations), we prove that the
LJ cohomology is invariant under conformal changes of the Jacobi structure.

Moreover, we compute the LJ cohomology for some relevant examples of Jacobi man-
ifolds: Poisson manifolds, contact manifolds, locally conformal symplectic manifolds and
the Jacobi structure of the unit sphere of a finite-dimensional real Lie algebra.

All the manifolds considered in this paper are assumed to be connected. Furthermore, if
M is a differentiable manifold, we will denote byC∞(M,R) the algebra ofC∞ real-valued
functions onM, by X(M) the Lie algebra of the vector fields, byΩk(M) the space of
k-forms and byV k(M) the space ofk-vectors.

2. Jacobi manifolds and Lie algebroids

A Jacobi structureon a manifoldM is a pair(Λ,E), whereΛ is a 2-vector andE is a
vector field onM satisfying the following properties:

[Λ,Λ] = 2E ∧ Λ, LEΛ = [E,Λ] = 0. (2.1)

Here [·, ·] denotes the Schouten–Nijenhuis bracket[1,25]andL is the Lie derivative opera-
tor. The manifoldM endowed with a Jacobi structure is called aJacobi manifold. A bracket
of functions (theJacobi bracket) is defined by

{f, g} = Λ(df,dg) + fE(g) − gE(f ) for all f, g ∈ C∞(M,R).

Thus, the spaceC∞(M,R) endowed with this bracket isa local Lie algebrain the sense
of Kirillov (see [11]). Conversely, a structure of local Lie algebra onC∞(M,R) defines a
Jacobi structure onM (see[9,11]). If the vector fieldE identically vanishes then(M,Λ) is a
Poisson manifold.Jacobi and Poisson manifolds were introduced by Lichnerowicz[18,19].

Examples of Poisson structures are symplectic and Lie–Poisson structures (see[18,28]).
Other interesting examples of Jacobi manifolds, which are not in general Poisson manifolds,
are the following ones.

Contact manifolds: Let M be a(2m + 1)-dimensional manifold andη a 1-form onM.
We say thatη is a contact 1-form ifη ∧ (dη)m �= 0 at every point. In such a case(M, η) is
termed acontact manifold(see e.g.[2,16,19]). If (M, η) is a contact manifold, we define
the associated Jacobi structure onM as follows:

Λ(α, β) = dη(�−1(α), �−1(β)), E = �−1(η)

for all α, β ∈ Ω1(M), where� : X(M) → Ω1(M) is the isomorphism ofC∞(M,R)

modules given by�(X) = iX dη + η(X)η.
Locally conformal symplectic manifolds: A locally conformal symplectic(l.c.s.)manifold

is a pair(M,Ω), whereM is an even-dimensional manifold andΩ is a non-degenerate
2-form such that, for each pointx ∈ M, there is an open neighborhoodU and a function
f : U → R satisfying d(efΩ) = 0, i.e.(U,efΩ) is a symplectic manifold. IfU = M then
M is said to bea globally conformal symplectic(g.c.s.)manifold. Equivalently,(M,Ω) is a
l.(g.)c.s. manifold ifΩ is a non-degenerate 2-form and there exists a closed (exact) 1-form
ω such that dΩ = ω ∧ Ω. The 1-formω is called theLee1-form of M. It is obvious that
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the l.c.s. manifolds with Lee 1-form identically zero are just the symplectic manifolds (see
e.g.[9,23]).

In a similar way that for contact manifolds, the Jacobi structure(Λ,E) associated to a
l.c.s. manifold(M,Ω) with Lee 1-formω is given by

Λ(α, β) = Ω(�−1(α), �−1(β)), E = �−1(ω) (2.2)

for all α, β ∈ Ω1(M), where� : X(M) → Ω1(M) is the isomorphism ofC∞(M,R)-
modules defined by�(X) = iXΩ (see[9]).

Unit sphere of a real Lie algebra: Let (g, [·, ·]) be a real Lie algebra of dimensionn and
let Λ̄ be the Lie–Poisson 2-vector on the dual vector spaceg∗ of g. Suppose that〈·, ·〉 is
a scalar product ong and thatg is the corresponding Riemannian metric ong. Using the
linear isomorphism�〈·,·〉 : g → g∗ given by�〈·,·〉(ξ)(η) = 〈ξ, η〉, for all ξ, η ∈ g, and the
Lie–Poisson structurēΛ, we can define a Poisson structure ong which we also denote by
Λ̄. Now, we consider the 2-vectorΛ′ and the vector fieldE′ ong given by

Λ′ = Λ̄ − A ∧ iαΛ̄, E′ = iαΛ̄, (2.3)

whereA is the radial vector field ong andα is the 1-form defined byα(X) = g(X,A), for
X ∈ X(g). Thus, the pair(Λ′, E′) induces a Jacobi structure ong. Moreover, ifS n−1(g)
is the unit sphere ing, it follows that the restrictionsΛ andE to S n−1(g) of Λ′ andE′,
respectively, are tangent toS n−1(g). Therefore, the pair(Λ,E) defines a Jacobi structure
onS n−1(g) (see[20]). In fact,(Λ,E) is a Poisson structure if and only if〈·, ·〉 is invariant
under the adjoint representation Ad :g× g→ g.

On the other hand, let(M,Λ,E) be a Jacobi manifold. Define a homomorphism of
C∞(M,R) modules #Λ : Ω1(M) → X(M) by

(#Λ(α))(β) = Λ(α, β) (2.4)

for α, β ∈ Ω1(M). This homomorphism can be extended to a homomorphism, which we
also denote by #Λ, from the spaceΩk(M) onto the spaceV k(M) by putting

#Λ(f ) = f, #Λ(α)(α1, . . . , αk) = (−1)kα(#Λ(α1), . . . ,#Λ(αk)) (2.5)

for f ∈ C∞(M,R), α ∈ Ωk(M) andα1, . . . , αk ∈ Ω1(M).
If f is aC∞ real-valued function on a Jacobi manifoldM, the vector fieldXf defined

by

Xf = #Λ(df ) + fE

is called theHamiltonian vector fieldassociated withf . Now, for everyx ∈ M, we consider
the subspaceFx of TxM generated by all the Hamiltonian vector fields evaluated at the point
x. In other words,Fx = (#Λ)x(T

∗
x M) + 〈Ex〉. SinceF is involutive, one easily follows

thatF defines a generalized foliation in the sense of Sussmann[22], which is called the
characteristic foliation(see[4,9]). Moreover, the Jacobi structure ofM induces a Jacobi
structure on each leaf which is a contact or a l.c.s. structure ([4,9]). If M is a Poisson
manifold then the characteristic foliation ofM is just thecanonical symplectic foliationof
M (see[25,28]).

To finish this section, we recall the definition of the Lie algebroid structure associated
with a Jacobi manifold.
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Let (M,Λ,E) be a Jacobi manifold. In[10], the authors obtain a Lie algebroid structure
([[ ·, ·]] (Λ,E), (#Λ,E)) on the vector bundleJ 1(M,R) ∼= T ∗M × R → M, where the ho-
momorphism ofC∞(M,R) modules(#Λ,E) : Γ (J 1(M,R)) ∼= Ω1(M)×C∞(M,R) →
X(M) defined by

(#Λ,E)(α, f ) = #Λ(α) + fE (2.6)

is the anchor map and the Lie bracket [[·, ·]] (Λ,E) : (Ω1(M) × C∞(M,R))2 → Ω1(M) ×
C∞(M,R) is given by

[[(α, f ), (β, g)]] (Λ,E) = (L#Λ(α)β − L#Λ(β)α − d(Λ(α, β)) + fLEβ − gLEα

− iE(α ∧ β), α(#Λ(β)) + #Λ(α)(g) − #Λ(β)(f )

+ fE(g) − gE(f )). (2.7)

In fact, if Λ is a 2-vector andE is a vector field on a manifoldM, we can consider the
homomorphism ofC∞(M,R) modules(#Λ,E) : Ω1(M) × C∞(M,R) → X(M) and
the bracket [[·, ·]] (Λ,E) : (Ω1(M) × C∞(M,R))2 → Ω1(M) × C∞(M,R) defined as
in (2.6) and (2.7), respectively. Then,(Λ,E) is a Jacobi structure onM if and only if
([[ ·, ·]] (Λ,E), (#Λ,E)), is a Lie algebroid structure onJ 1(M,R).

In the particular case when(M,Λ) is a Poisson manifold we recover, by projection on
the first factor, the Lie algebroid associated toM (see[1,3,5,25]).

3. Lichnerowicz–Jacobi cohomology and conformal changes

Let (M,Λ,E) be a Jacobi manifold. Denote by{·, ·} its associated bracket. We consider
the cohomology complex(C∗

HCE(M), ∂H ) of the Lie algebra(C∞(M,R), {·, ·}) relative to
the representation defined by the Hamiltonian vector fields, that is,

C∞(M,R) × C∞(M,R) → C∞(M,R), (f, g) → Xf (g).

Its corresponding cohomologyH ∗
HCE(M) is called theH–Chevalley–Eilenberg cohomol-

ogyassociated toM (see[13–15]). Note that for a Poisson manifoldM, H ∗
HCE(M) is the

Chevalley–Eilenberg cohomologyof the Lie algebra(C∞(M,R), {·, ·}) (see[18]). How-
ever, for arbitrary Jacobi manifolds, the Chevalley–Eilenberg cohomology (which is defined
with respect to the representation given by the Jacobi bracket[19]) does not coincide in
general with the H–Chevalley–Eilenberg cohomology.

An interesting subcomplex of the H–Chevalley–Eilenberg complex is the complex of
the 1-differentiable cochains. Ak-cochainck ∈ Ck

HCE(M) is said to be 1-differentiableif
it is defined by ak-linear skew-symmetric differential operator of order 1. Then, we can
identify the spaceV k(M) ⊕ V k−1(M) with the space of all 1-differentiablek-cochains
Ck

HCE-1diff (M) using the isomorphismjk : V k(M) ⊕ V k−1(M) → Ck
HCE-1diff (M) given

by

jk(P,Q)(f1, . . . , fk) = P(df1, . . . ,dfk)

+
k∑

q=1

(−1)q+1fqQ(df1, . . . , d̂fq, . . . ,dfk). (3.1)
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Under this identification, we have a new cohomology complex(V ∗(M) ⊕ V ∗−1(M), σ ),
where the cohomology operatorσ is defined by

σ(P,Q) = (−[Λ,P ] + kE∧ P + Λ ∧ Q, [Λ,Q] − (k − 1)E ∧ Q + [E,P ])

(3.2)

for all (P,Q) ∈ V k(M) ⊕ V k−1(M). The cohomology of this complex will be called the
Lichnerowicz–Jacobi cohomology(LJ cohomology) of M and denoted byH ∗

LJ(M,Λ,E) or
simply byH ∗

LJ(M) if there is not danger of confusion (see[14,15]). This cohomology is a
generalization of the Lichnerowicz–Jacobi cohomology introduced in[12,13]. In fact, the
former one is the cohomology of the subcomplex of the pairs(P,0), whereP is invariant
by E. For this reason, we retain the name.

Moreover, if(J 1(M,R), [[ ·, ·]] (Λ,E), (#Λ,E)) is the Lie algebroid overM (seeSection 2),
then, in[26] it is proved that the LJ cohomology ofM is just the Lie algebroid cohomology
of J 1(M,R) with trivial coefficients (for the definition of the Lie algebroid cohomology
see, for instance,[21]).

Next, we will prove that the LJ cohomology is invariant under conformal changes.
Let (Λ,E) be a Jacobi structure onM. A conformal changeof (Λ,E) is a new Jacobi

structure(Λa,Ea) onM defined by

Λa = aΛ, Ea = Xa = #Λ(da) + aE, (3.3)

a being a positiveC∞ real-valued function onM (see[4,9]). Moreover, we have the fol-
lowing theorem.

Theorem 3.1. The LJ cohomology is invariant under conformal changes of the Jacobi
structure.

Proof. Let (M,Λ,E) be a Jacobi manifold and(Λa,Ea) a conformal change of the Jacobi
structure(Λ,E). We define the isomorphism of vector bundlesφ : T ∗M ×R → T ∗M ×R
by

φ(αx, λ) =
(

1

a(x)
αx + λd

(
1

a

)
(x),

λ

a(x)

)
for αx ∈ T ∗

x M and λ ∈ R. (3.4)

A direct computation, using(2.6), (2.7), (3.3) and (3.4), proves thatφ defines an isomorphism
between the Lie algebroids(T ∗M × R, [[ ·, ·]] (Λ,E), (#Λ,E)) and(T ∗M × R, [[ ·, ·]] (Λa,Ea),
(#Λa ,Ea)) associated with the Jacobi structures(Λ,E) and(Λa,Ea), respectively. There-
fore (see[21]), it follows thatHk

LJ(M,Λ,E) ∼= Hk
LJ(M,Λa,Ea), for all k. �

4. Examples

4.1. Poisson manifolds

Now, let(M,Λ) be a Poisson manifold and letσ be the LJ cohomology operator. Denote
by σ̄ the cohomology operator of the subcomplex of the pairs(P,0). Under the canonical
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identificationV k(M)⊕{0} ∼= V k(M), we have that̄σ(P ) = −[Λ,P ]. The cohomology of
the complex(V ∗(M), σ̄ ) is called theLichnerowicz–Poisson cohomology(LP cohomology)
of M and denoted byH ∗

LP(M) (see[18,25]).
In [18] (see also[17]), Lichnerowicz has exhibited the relation between the LJ cohomol-

ogy (the 1-differentiable Chevalley–Eilenberg cohomology in his terminology) and the LP
cohomology of a Poisson manifold(M,Λ). In fact, he proves that if dimHk

LP(M) < ∞,
for all k, then the LJ cohomology groups have finite dimension and

Hk
LJ(M) ∼= Hk

LP(M)

Im Lk−2
⊕ kerLk−1, (4.1)

whereLk : Hk
LP(M) → Hk+2

LP (M) is the homomorphism given byLk[P ] = [P ∧ Λ], for
all [P ] ∈ Hk

LP(M).
Symplectic structure: If (M,Ω) is a symplectic manifold of dimension 2m and finite type

then the map #Λ : Ωk(M) → V k(M) induces an isomorphism betweenHk
LP(M) and the

de Rham cohomology groupH ∗
dR(M) (see[18,25]). Under this identification, we have that

Hk
LJ(M) ∼= Hk

dR(M)

Im Lk−2
⊕ kerLk−1, (4.2)

where nowLk : Hk
dR(M) → Hk+2

dR (M) is the homomorphism given byLk([α]) = [α∧Ω],
for all [α] ∈ Hk

dR(M) and 0≤ k ≤ 2m.
Lie Poisson structure: Let Λ be anexact Poisson structureon a manifoldM, that is,

there exists a vector fieldA on M such thatΛ = σ̄A = −LAΛ. Then,Hk
LJ(M) ∼=

Hk
LP(M) ⊕ Hk−1

LP (M) (see[18]).
Now, suppose thatg is a real Lie algebra of dimensionn and thatΛ̄ is the Lie–Poisson

structure ong∗. SinceΛ̄ is exact, it follows that

Hk
LJ(g

∗) ∼= Hk
LP(g

∗) ⊕ Hk−1
LP (g∗). (4.3)

Moreover, ifg is the Lie algebra of a compact Lie group, in[7] the authors proved that

Hk
LP(g

∗) ∼= Hk(g) ⊗ Inv, (4.4)

whereH ∗(g) is the cohomology ofg relative to the trivial representation ofg onR and Inv
is the algebra of allCasimir functionson g∗, that is, Inv= {f ∈ C∞(g∗,R)/Xf = 0}.
Therefore, from(4.3) and (4.4), we conclude that for the Lie algebrag of a compact Lie
group

Hk
LJ(g

∗) ∼= (Hk(g) ⊗ Inv) ⊕ (Hk−1(g) ⊗ Inv).

4.2. Contact manifolds

In order to give an explicit description of the LJ cohomology of a contact manifold, first,
we will obtain a general result for Jacobi manifolds which relates the de Rham cohomology
and the LJ cohomology.
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Let (M,Λ,E) be a Jacobi manifold. Denote by #Λ : Ωk(M) → V k(M) the homomor-
phism ofC∞(M,R) modules given by(2.4) and (2.5). Then, we have (see[12,13]):

LE(#Λ(α)) = #Λ(LEα),

−[Λ,#Λ(α)] + kE∧ #Λ(α) = −#Λ(dα) + #Λ(iEα) ∧ Λ (4.5)

for all α ∈ Ωk(M). Using(2.1), (3.2) and (4.5), we deduce the following result.

Proposition 4.1. Let (M,Λ,E) be a Jacobi manifold and̃Fk : Ωk(M) ⊕ Ωk−1(M) →
V k(M) ⊕ V k−1(M) the homomorphism ofC∞(M,R) modules defined by

F̃ k(α, β) = (#Λ(α) + E ∧ #Λ(β),−#Λ(iEα) + E ∧ #Λ(iEβ)), (4.6)

for all α ∈ Ωk(M) andβ ∈ Ωk−1(M). Then, the homomorphisms̃Fk induce a homomor-
phism of complexes̃F : (Ω∗(M),−d)⊕(Ω∗−1(M),d) → (V ∗(M)⊕V ∗−1(M), σ ). Thus,
if H ∗

dR(M) is the de Rham cohomology of M, we have the corresponding homomorphism in

cohomologyF̃ : H ∗
dR(M) ⊕ H ∗−1

dR (M) → H ∗
LJ(M).

Now, let (M, η) be a contact manifold and(Λ,E) its associated Jacobi structure. The
isomorphism ofC∞(M,R) modules� : X(M) → Ω1(M) given by�(X) = iX(dη) +
η(X)η, can be extended to a mapping, which we also denote by�, from the spaceV k(M)onto
the spaceΩk(M) by putting�(X1 ∧ · · ·∧Xk) = �(X1)∧ · · ·∧ �(Xk), for all X1, . . . , Xk ∈
X(M). This extension is also an isomorphism ofC∞(M,R) modules. In fact, it follows that

#Λα = (−1)k�−1(α) + E ∧ #Λ(iEα) (4.7)

for α ∈ Ωk(M) (see[13]). Moreover, we have the following result.

Theorem 4.2. Let (M, η) be a contact manifold of dimension2m + 1. ThenHk
LJ(M) ∼=

Hk
dR(M) ⊕ Hk−1

dR (M), for all k.

Proof. Using (4.6) and (4.7)and the fact thatiE ◦ � = � ◦ iη, we deduce that the homo-
morphism ofC∞(M,R) modulesG̃k : V k(M)⊕V k−1(M) → Ωk(M)⊕Ωk−1(M) given
by

G̃k(P,Q) = ((−1)k(�(P )+ η∧�(Q)− η ∧ �(iηP )), (−1)k−1(�(iηP )−η ∧ �(iηQ)))

is just the inverse homomorphism of̃Fk : Ωk(M) ⊕ Ωk−1(M) → V k(M) ⊕
V k−1(M). �

Remark 4.3. In [17], Lichnerowicz showed that the 1-differentiable Chevalley–Eilenberg
cohomology of a contact manifold is trivial (compare this result withTheorem 4.2).

4.3. Locally conformal symplectic manifolds

In this section, we will study the LJ cohomology of a l.c.s. manifold. First, we will obtain
some results about a certain cohomology, introduced by Guédira and Lichnerowicz[9],
which is associated to an arbitrary differentiable manifold endowed with a closed 1-form.
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LetM be a differentiable manifold andω a closed 1-form onM. Define the cohomology
operator dω by (see[9])

dω = d + e(ω), (4.8)

d being the exterior differential ande(ω) the operator given by

e(ω)(α) = ω ∧ α for all α ∈ Ω∗(M). (4.9)

Denote byH ∗
ω(M) the cohomology of the complex(Ω∗(M),dω).

Proposition 4.4. Let M be a differentiable manifold andω a closed1-form on M. Then,

(i) The differential complex(Ω∗(M),dω) is elliptic. Thus, if M is compact the cohomology
groupsHk

ω(M) have finite dimension.
(ii) If ω is exact thenHk

ω(M) ∼= Hk
dR(M).

Proof.

(i) It is easy to check that the differential operators d and dω have the same symbol which
implies that the complex(Ω∗(M),dω) is elliptic.

(ii) A direct computation proves that ifω = df , with f a C∞ real-valued function on
M, then the mappingφ : Hk

dR(M) → Hk
ω(M), given byφ([α]) = [e−f α], is an

isomorphism. �

If the 1-formω is not exact then, in general,H ∗
ω(M) � H ∗

dR(M). In fact, we will show
next that ifM is compact andω is non-null and parallel with respect to a Riemannian metric
onM, then the cohomologyH ∗

ω(M) is trivial. First, we will recall some results proved by
Guédira and Lichnerowicz[9] which will be useful in the sequel.

Suppose thatM is a compact differentiable manifold of dimensionn, thatω is a closed
1-form onM and thatg is a Riemannian metric. Consider the vector fieldU onM charac-
terized by the conditionω(X) = g(X,U), for allX ∈ X(M). Denote byδ the codifferential
operator and byiU the contraction by the vector fieldU , that is (see[8]),

δα = (−1)nk+n+1(� ◦ d ◦ �)(α),

iU (α) = (−1)nk+n(� ◦ e(ω) ◦ �)(α) for α ∈ Ωk(M), (4.10)

� being the Hodge star isomorphism. Then, we define the operatorδω : Ωk(M) →
Ωk−1(M) by (see[9])

δω = δ + iU . (4.11)

Now, consider the standard scalar product〈·, ·〉 on the spaceΩk(M):

〈·, ·〉 : Ωk(M) × Ωk(M) → R, (α, β) �→ 〈α, β〉 =
∫
M

α ∧ �β.

Then, it is easy to prove that〈dωα, β〉 = 〈α, δωβ〉, for all α ∈ Ωk−1(M) andβ ∈ Ωk(M)

(see[9]). Thus, sinceM is compact and the complex(Ω∗(M),dω) is elliptic, we obtain an
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orthogonal decomposition of the spaceΩk(M) as follows:

Ωk(M) = Hk
ω(M) ⊕ dω(Ω

k−1(M)) ⊕ δω(Ω
k+1(M)), (4.12)

whereHk
ω(M) = {α ∈ Ωk(M)/dω(α) = 0, δω(α) = 0} (see[9]). From(4.12), it follows

that

Hk
ω(M) ∼= Hk

ω(M). (4.13)

Now, we will prove the announced result about the triviality of the cohomologyH ∗
ω(M).

Theorem 4.5. Let M be a compact differentiable manifold andω a closed1-form on M,
ω �= 0. Suppose that g is a Riemannian metric on M such thatω is parallel with respect to
g. Then, the cohomologyH ∗

ω(M) is trivial.

Proof. Sinceω is parallel and non-null it follows that‖ω‖ = c, with c constant,c > 0.
Assume, without the loss of generality, thatc = 1. Note that ifc �= 1, we can consider the
Riemannian metricg′ = c2g and it is clear that the module ofω with respect tog′ is 1 and
thatω is also parallel with respect tog′.

Under the hypothesisc = 1, we have that

ω(U) = 1. (4.14)

Using thatω is parallel and thatU is Killing, we obtain that (see(4.10)and[8])

LU = −δ ◦ e(ω) − e(ω) ◦ δ, (4.15)

δ ◦ LU = LU ◦ δ. (4.16)

From(4.8)–(4.11), (4.14) and (4.16), we deduce the following relations:

dω ◦ iU = −iU ◦ dω + LU + Id, δω ◦ iU = −iU ◦ δω, (4.17)

dω ◦ LU = LU ◦ dω, δω ◦ LU = LU ◦ δω, (4.18)

where Id denotes the identity transformation.
On the other hand,(4.15)implies that〈LUα, α〉 = −〈α,diUα + iU dα〉 = −〈α,LUα〉,

for all α ∈ Ωk(M). Thus,

〈LUα, α〉 = 0. (4.19)

Now, if α ∈ Hk
ω(M) then, using(4.17), we have thatLUα = −α + dω(iUα). But, by

(4.18), we deduce thatLUα ∈ Hk
ω(M). Therefore (see(4.12)), we obtain thatLUα = −α.

Consequently, from(4.19), it follows thatα = 0. This proves thatHk
ω(M) = {0} which

implies thatHk
ω(M) = {0} (see(4.13)). �

Next, we will obtain some results which relate the LJ cohomology of a l.c.s. manifold
M, the cohomologyH ∗

ω(M) (ω being the Lee 1-form ofM) and the de Rham cohomology
of M.

Let (M,Ω) be a l.c.s. manifold with Lee 1-formω. Suppose that(Λ,E) is the associated
Jacobi structure onM and that� : X(M) → Ω1(M) is the isomorphism ofC∞(M,R)
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modules defined by�(X) = iXΩ. The isomorphism� : X(M) → Ω1(M) can be extended
to a mapping, which we also denote by�, from the spaceV k(M) onto the spaceΩk(M)

by putting:�(X1 ∧ · · · ∧ Xk) = �(X1) ∧ · · · ∧ �(Xk), for all X1, . . . , Xk ∈ X(M). This
extension is also an isomorphism ofC∞(M,R) modules. In fact, we have that (see[13])

#Λα = (−1)k�−1(α) for all α ∈ Ωk(M), (4.20)

where #Λ : Ωk(M) → V k(M) is the homomorphism given by(2.4) and (2.5).
Using(2.2), (2.4), (2.5), (4.20)and the fact that #Λ(ω) = −E, we obtain

#Λ ◦ iE = iω ◦ #Λ, iE ◦ � = −� ◦ iω. (4.21)

Thus, from(4.5), (4.20) and (4.21), we deduce that

−�[Λ,P ] + kω ∧ �(P ) = d�(P ) − iE(�(P )) ∧ Ω, LE�(P ) = �(LEP ) (4.22)

for all P ∈ V k(M). Now, suppose that̄Fk : Ωk(M) → V k(M) ⊕ V k−1(M) andḠk :
V k(M)⊕V k−1(M) → Ωk−1(M) are the homomorphisms ofC∞(M,R) modules defined
by

F̄ k(α) = (#Λα,−#Λ(iEα)) and Ḡk(P,Q) = (−1)k(−�(Q) + iE�(P ))

for all α ∈ Ωk(M) and(P,Q) ∈ V k(M) ⊕ V k−1(M). Then, using(2.2), (3.2), (4.5), (4.8)
and (4.20)–(4.22), we prove that the mappings̄Fk and Ḡk induce an exact sequence of
complexes

0 → (Ω∗(M),d)
F̄→(V ∗(M) ⊕ V ∗−1(M),−σ)

Ḡ→(Ω∗−1(M),−dω) → 0,

where d is the exterior differential,σ the LJ cohomology operator and dω is the operator
given by(4.8). Thus, one induces a long exact cohomology sequence

· · · → Hk
dR(M)

F̄ k∗→Hk
LJ(M)

Ḡk∗→Hk−1
ω (M)

Lk−1

→ Hk+1
dR (M) → · · · ,

with connecting homomorphismLk−1 defined byLk−1([α]) = [α ∧ Ω], for all [α] ∈
Hk−1

ω (M). Therefore, we have the following result.

Theorem 4.6. Let(M,Ω) be a l.c.s. manifold of finite type with Lee1-formω and suppose
that the dimension ofHk

ω(M) is finite, for all k. Then,

Hk
LJ(M) ∼= Hk

dR(M)

Im Lk−2
⊕ kerLk−1.

UsingTheorems 4.5 and 4.6andProposition 4.4, we deduce the following corollaries.

Corollary 4.7. Let (M,Ω) be a g.c.s. manifold of finite type with Lee1-form ω = df .
Then,

Hk
LJ(M) ∼= Hk

dR(M)

Im L̄k−2
⊕ kerL̄k−1,
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for all k, whereH ∗
dR(M) is the de Rham cohomology of M andL̄r : Hr

dR(M) → Hr+2
dR (M)

is the homomorphism defined byL̄r [α] = [e−f α ∧ Ω], for all [α] ∈ Hr
dR(M).

Corollary 4.8. Let(M,Ω) be a compact l.c.s. manifold with Lee1-formω,ω �= 0.Suppose
that g is a Riemannian metric on M such thatω is parallel with respect to g. Then,

Hk
LJ(M) ∼= Hk

dR(M) for all k.

Remark 4.9. If (M,Ω) a g.c.s. manifold with Lee 1-formω = df and (Λ,E) is the
associated Jacobi structure, then the 2-formΩ̄ = e−fΩ is symplectic. Thus, the Jacobi
structure(Λ,E) is a conformal change of the Poisson structureΛ̄ on M associated with
the symplectic 2-formΩ̄. More precisely, we have thatΛ = e−f Λ̄ andE = #Λ̄(d(e−f )).
Thus,Corollary 4.7follows directly from(4.2)andTheorem 3.1.

Example 4.10. Let (N, η) be a contact manifold.

1. Consider on the product manifoldM = N × R the 2-formΩ given by

Ω = (pr1)
∗(dη) − (pr2)

∗(dt) ∧ (pr1)
∗(η),

wheret is the usual coordinate onR and pri (i = 1,2) are the canonical projections of
M onto the first and second factor, respectively. Then,(M,Ω) is a g.c.s. manifold with
Lee 1-formω = (pr2)

∗(dt). Moreover, in this case, the symplectic 2-form̄Ω = e−tΩ

is exact which implies that the homomorphismL̄r is null, for all r. Consequently, using
Corollary 4.7, it follows thatHk

LJ(M) ∼= Hk
dR(M)⊕Hk−1

dR (M) ∼= Hk
dR(N)⊕Hk−1

dR (N).
2. Assume thatN is compact and consider on the product manifoldM = N × S1 the

2-formΩ defined by

Ω = (pr1)
∗(dη) − (pr2)

∗(θ) ∧ (pr1)
∗(η),

θ being the length element ofS1. Then,(M,Ω) is a l.c.s. manifold with Lee 1-formω =
(pr2)

∗(θ). Furthermore, ifh is a Riemannian metric onN , the 1-formω is parallel with
respect to the Riemannian metricg onM given byg = (pr1)

∗(h) + ω ⊗ ω. Therefore,
usingCorollary 4.8, we deduceHk

LJ(M) ∼= Hk
dR(M) ∼= Hk

dR(N) ⊕ Hk−1
dR (N).

4.4. The unit sphere of a real Lie algebra

If (g, [·, ·]) is a real Lie algebra of dimensionn endowed with a scalar product〈·, ·〉, then
the unit sphere ofg, S n−1(g), admits a Jacobi structure (seeSection 2). In this section, we
will describe the LJ cohomology of the sphere for the case wheng is the Lie algebra of a
compact Lie group.

First, we will prove some results which will be useful in the sequel.

Lemma 4.11. If ξ ∈ g and ξ̃ : S n−1(g) × R → R is the realC∞-function given by

ξ̃ (θ, t) = et 〈ξ, θ〉, (4.23)
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for all (θ, t) ∈ S n−1(g) × R, then∂ξ̃/∂t = ξ̃ . Moreover, if {ξi}i=1,...,n is a basis ofg we
have that the set{dξ̃i}i=1,...,n is a global basis of the space of1-forms onS n−1(g) × R.

Proof. Let F : g − {0} → S n−1(g) × R be the diffeomorphism defined byF(ξ) =
(ξ/‖ξ‖, ln ‖ξ‖). Then, we deduce thatξ̃ ◦F = 〈ξ, ·〉, for all ξ ∈ g, where〈ξ, ·〉 : g−{0} →
R is the real function given by〈ξ, ·〉(θ) = 〈ξ, θ〉, for all θ ∈ g−{0}. This proves the second
assertion ofLemma 4.11.

The equation∂ξ̃/∂t = ξ̃ follows directly from(4.23). �

Now, we will describe the LJ cohomology ofS n−1(g) for the case wheng is the Lie
algebra of a compact Lie group.

Theorem 4.12. Letg be the Lie algebra of a compact Lie group G of dimension n. Suppose
that 〈·, ·〉 is a scalar product ong and consider on the unit sphereS n−1(g) the induced
Jacobi structure. ThenHk

LJ(S
n−1(g)) ∼= Hk(g) ⊗ Inv, for all k, whereH ∗(g) is the co-

homology ofg relative to the trivial representation ofg on R and Inv is the Lie subal-
gebra ofC∞(S n−1(g),R) defined byInv = {ϕ ∈ C∞(S n−1(g),R)/Xf (ϕ) = 0,∀f ∈
C∞(S n−1(g),R)}.

Proof. Under the canonical identification defined by the scalar product betweeng andg∗,
the coadjoint action Ad∗ : G × g∗ → g∗ induces an action of the Lie groupG on g,
which will denote byÃd

∗
. Thus, we can define an action ofG on the unit sphereS n−1(g),

Ad
∗

: G × S n−1(g) → S n−1(g), given byAd
∗
(g, ξ) = Ãd

∗
(g, ξ)/‖Ãd

∗
(g, ξ)‖. This last

action induces a representation ofg on the vector spaceC∞(S n−1(g),R) defined by

(ξ, ϕ) ∈ g× C∞(S n−1(g),R) → ξS n−1(g)(ϕ) ∈ C∞(S n−1(g),R),

ξS n−1(g) being the infinitesimal generator, with respect to the actionAd
∗
, associated toξ ∈ g.

Moreover, using a result in[20], we deduce thatξS n−1(g) is the Hamiltonian vector field on
S n−1(g) associated to the function〈ξ, ·〉 : S n−1(g) → R given by〈ξ, ·〉(η) = 〈ξ, η〉, that
is,

ξS n−1(g) = X〈ξ,·〉. (4.24)

The above representation allows us to consider the differential complex(C∗(g;C∞(S n−1(g),
R)), ∂) and its cohomologyH ∗(g;C∞(S n−1(g),R)).

We will show thatHk
LJ(S

n−1(g)) ∼= Hk(g;C∞(S n−1(g),R)), for all k.
LetCk

HCE(S
n−1(g)) be the space ofk-cochains in the H–Chevalley–Eilenberg complex of

S n−1(g). We define the homomorphismµk : Ck
HCE(S

n−1(g)) → Ck(g;C∞(S n−1(g),R))

by

(µk(ck))(ξ1, . . . , ξk) = ck(〈ξ1, ·〉, . . . , 〈ξk, ·〉) (4.25)

for all ck ∈ Ck
HCE(S

n−1(g)) andξ1, . . . , ξk ∈ g.
Now, consider the homomorphism ofC∞(S n−1(g),R) modules

Φk : V k(S n−1(g)) ⊕ V k−1(S n−1(g)) → Ck(g;C∞(S n−1(g),R))
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defined by

Φk = µk ◦ jk, (4.26)

jk : V k(S n−1(g))⊕V k−1(S n−1(g)) → Ck
HCE(S

n−1(g)) being the mapping given by(3.1).
A direct computation shows that

(Φk(P,Q))(ξ1, . . . , ξk)(ξ)

= P(d〈ξ1, ·〉, . . . ,d〈ξk, ·〉)(ξ)

+
k∑

i=1

(−1)i+1〈ξi, ξ〉Q(d〈ξ1, ·〉, . . . , d̂〈ξi, ·〉, . . . ,d〈ξk, ·〉)(ξ)

= ((̃P ,Q)(dξ̃1, . . . ,dξ̃k))(ξ,0) (4.27)

for all (P,Q) ∈ V k(S n−1(g)) ⊕ V k−1(S n−1(g)), ξ1, . . . , ξk ∈ g andξ ∈ S n−1(g), where

ξ̃i (i = 1, . . . , k) is the function onS n−1(g)×R given by(4.23)and(̃P ,Q) is thek-vector
onS n−1(g) × R defined by

(̃P ,Q) = e−kt
(
P + ∂

∂t
∧ Q

)
. (4.28)

On the other hand, if{·, ·} is the Jacobi bracket onS n−1(g), then using(2.3) and the
expression of{·, ·} in terms of global coordinates ong obtained from an orthonormal basis,
one can prove that for allξ, η ∈ g

{〈ξ, ·〉, 〈η, ·〉} = 〈[ξ, η], ·〉.
This fact, (4.24) and (4.25)imply that the mappingsµk induce a homomorphism be-
tween the complexes(C∗

HCE(S
n−1(g)), ∂H ) and (C∗(g;C∞(S n−1(g),R)), ∂). Thus, the

mappingsΦk induce a homomorphism between(V ∗(S n−1(g)) ⊕ V ∗−1(S n−1(g)), σ ) and
(C∗(g;C∞(S n−1(g),R)), ∂) (see(4.26)and results of theSection 3).

To show thatΦk is a monomorphism, we suppose thatΦk(P,Q) = 0. Then, from

(4.28) and Lemma 4.11, it follows that,L∂/∂t (̃P ,Q) = −k(̃P ,Q), and (∂/∂t)((̃P ,Q)

(dξ̃1, . . . ,dξ̃k)) = 0, for all ξ1, . . . , ξk ∈ g, whereξ̃i (i = 1, . . . , k) is the realC∞-function
on S n−1(g) × R given by(4.23). Therefore, using these facts and(4.27), we deduce that

0 = (̃P ,Q) = e−kt(P + (∂/∂t) ∧ Q). Thus,P = 0 andQ = 0.
Next, we will see thatΦk is an epimorphism. Letck : g×· · ·k · · ·×g→ C∞(S n−1(g),R)

be aC∞(S n−1(g),R)-valuedk-cochain. We define ak-vectorR onS n−1(g) × R charac-
terized by the condition

R(dξ̃1, . . . ,dξ̃k)(ξ, t) = ekt(ck(ξ1, . . . , ξk)(ξ)) (4.29)

for all ξ1, . . . , ξk ∈ g and(ξ, t) ∈ S n−1(g) × R.
FromLemma 4.11and(4.29), we deduce thatR is well-defined and thatL∂/∂tR = 0.

This implies that

R = P + ∂

∂t
∧ Q, (4.30)
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with (P,Q) ∈ V k(S n−1(g)) ⊕ V k−1(S n−1(g)). Moreover, from(4.27)–(4.30), it follows
thatΦk(P,Q) = ck. Thus,Φk is an epimorphism.

Therefore, we conclude thatHk
LJ(S

n−1(g)) ∼= Hk(g;C∞(S n−1(g),R)), for all k.
Now, if we apply a general result of Ginzburg and Weinstein (see Theorem 3.5 of[7];

see also[27]), we obtain thatHk(g;C∞(S n−1(g),R)) ∼= Hk(g) ⊗ Inv, whereInv is the
algebra ofG-invariant functions onS n−1(g) with respect to the actionAd

∗
.

Finally, from(4.24)and since the characteristic foliation ofS n−1(g) is generated by the
set of Hamiltonian vector fields{X〈ξ,·〉/ξ ∈ g}, we deduce thatInv = Inv. �
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