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Abstract

Lichnerowicz—Jacobi cohomology of Jacobi manifolds is reviewed. The use of the associated Lie
algebroid allows to prove that the Lichnerowicz—Jacobi cohomology is invariant under conformal
changes of the Jacobi structure. We also compute the Lichnerowicz—Jacobi cohomology for a large
variety of examples.
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1. Introduction

Since their introduction by Lichnerowicz [t48,19], Poisson and Jacobi manifolds have
deserved a lot of interest in the mathematical physics literature. Indeed, the need to use
more general phase spaces for Hamiltonian systems lead to the consideration of Poisson
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brackets of non-constant rank, and, more than this, brackets which do not satisfy Leibniz
rule (Jacobi brackets).

From the viewpoint of differential geometry, both structures are of great interest. The local
and global structures of Poisson and Jacobi manifolds were elucidated by several authors
([4,9,11,28] see als¢1,16,25). A Poisson manifold is basically made of symplectic pieces,
but the structure of a Jacobi manifold is more complicated, and it is made of pieces which
are contact or locally conformal symplectic manifolds.

The Poisson structure of a Poisson maniftdcallows to define some cohomology op-
erators. Indeed, the Poisson bivectoMpidetermines the so-called Lichnerowicz—Poisson
cohomology (LP cohomology) and the 1-differentiable Chevalley—Eilenberg cohomology,
which can be alternatively described as the cohomologies of two subcomplexes of the
Chevalley—Eilenberg complex associated with the Lie algebra of differentiable functions
endowed with its Poisson bracket (4§&8]). Computation of Poisson cohomology is gen-
erally quite difficult. For regular Poisson manifolds and for the Lie—Poisson structure on
the dual space of the Lie algebra of a compact Lie group, some results were obtained in
[6,7,24,30] On the other hand, we remark that #ik LP cohomology group has interesting
interpretations for the first few values bf Moreover, these cohomology groups allow to
describe important results about the geometric quantization and the deformation quantiza-
tion of Poisson manifolds (for more information, we refef28] and to the recent survey
[29]; see also the references therein).

The situation for a Jacobi manifol®¥ is more involved. Note that the Jacobi bracket
of functions onM is a linear skew-symmetric 2-differential operator of order 1 or, in
other words, a 1-differentiable 2-cochain in the Chevalley—Eilenberg complex of the Lie
algebra of functions. Imitating the Poisson case, for a Jacobi manifold, one can con-
sider the representation of the Lie algebra of functions on itself given by the Jacobi
bracket. The resultant cohomology, the Chevalley—Eilenberg cohomology, was studied
by Guédira and Lichnerowic®] and LichnerowicZ19]. Particularly, they studied the
1-differentiable Chevalley—Eilenberg cohomology, that is, the cohomology of the subcom-
plex of the Chevalley—Eilenberg complex which consists of the 1-differentiable cochains.
Butthere is a second possibility considering the representation of the Lie algebra of functions
on itself given by the action of the Hamiltonian vector fields. The resultant cohomology was
termed by the authors, ji4,15], the H-Chevalley—Eilenberg cohomology. As in the case of
the Chevalley—Eilenberg complex, one can consider also the cohomology of the subcomplex
of the 1-differentiable cochains which was called the Lichnerowicz—Jacobi cohomology,
LJ cohomology, for brevity (s€@4,15)). For a Poisson manifold, the Chevalley—Eilenberg
cohomology and the H-Chevalley—Eilenberg cohomology coincide and the 1-differentiable
Chevalley—Eilenberg cohomology is just the LJ cohomology. The H-Chevalley—Eilenberg
cohomology and the LJ cohomology of a Jacobi manifgighlay an important role in the
geometric quantization a#f and in the study of the existence of prequantization represen-
tations for complex line bundles ovéf (for more details, sef4,15)).

The LJ cohomology can be also described using the Lie algebroid associated with the
Jacobi manifold. Indeed, it is just the Lie algebroid cohomology with trivial coefficients
(se€[14,15,26).

In this paper we review this cohomology theory obtaining new properties about it. So,
thinking about the intrinsic conformal character of the Jacobi structures (the Hamiltonian
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vector fields of a Jacobi manifold are conformal Jacobi transformations), we prove that the
LJ cohomology is invariant under conformal changes of the Jacobi structure.

Moreover, we compute the LJ cohomology for some relevant examples of Jacobi man-
ifolds: Poisson manifolds, contact manifolds, locally conformal symplectic manifolds and
the Jacobi structure of the unit sphere of a finite-dimensional real Lie algebra.

All the manifolds considered in this paper are assumed to be connected. Furthermore, if
M is a differentiable manifold, we will denote 6y (M, R) the algebra o€ ° real-valued
functions onM, by X¥(M) the Lie algebra of the vector fields, kg* (M) the space of
k-forms and byV¥ (M) the space of-vectors.

2. Jacobi manifoldsand Lie algebroids

A Jacobi structureon a manifoldM is a pair(A, E), whereA is a 2-vector andt is a
vector field onM satisfying the following properties:

[A,A]=2EAA, LpA=I[E, A]l=0. (2.1)

Here [, -] denotes the Schouten—Nijenhuis bradke®5] and/L is the Lie derivative opera-
tor. The manifoldV/ endowed with a Jacobi structure is callethaobi manifoldA bracket
of functions (theJacobi brackeétis defined by

{f. g} = A(df,dg) +fE(g) —gE(f) forall f,ge C®(M,R).

Thus, the spac€> (M, R) endowed with this bracket & local Lie algebrain the sense
of Kirillov (see[11]). Conversely, a structure of local Lie algebra®@ff (M, R) defines a
Jacobi structure oM (se€9,11)). If the vector fieldE identically vanishes thefi, A) isa
Poisson manifoldJacobi and Poisson manifolds were introduced by Lichnerofd84 9]

Examples of Poisson structures are symplectic and Lie—Poisson structurgd3(28g.
Other interesting examples of Jacobi manifolds, which are not in general Poisson manifolds,
are the following ones.

Contact manifoldsLet M be a(2m + 1)-dimensional manifold ang a 1-form onM.
We say thay is a contact 1-form if) A (dn)™ # 0 at every point. In such a cas#, ) is
termed acontact manifoldsee e.g[2,16,19). If (M, n) is a contact manifold, we define
the associated Jacobi structuredras follows:

A, B) =dnOo 1), p71(B),  E=b>"1(n)

for all o, B € 21(M), whereb : X(M) — £2Y(M) is the isomorphism o> (M, R)
modules given by(X) = ix dn + n(X)n.

Locally conformal symplectic manifolds locally conformal symplectig.c.s.)manifold
is a pair(M, £2), whereM is an even-dimensional manifold a2l is a non-degenerate
2-form such that, for each pointe M, there is an open neighborhoétand a function
f U — Rsatisfyingde/ ) = 0,i.e.(U, e/ 22) is a symplectic manifold. It/ = M then
M is said to bea globally conformal symplectig.c.s.)manifold Equivalently,(M, 2) isa
I.(g.)c.s. manifold ifs2 is a non-degenerate 2-form and there exists a closed (exact) 1-form
w such that @ = w A 2. The 1-formw is called theLee1l-form of M. It is obvious that



510 M. de Leén et al./ Journal of Geometry and Physics 44 (2003) 507-522

the l.c.s. manifolds with Lee 1-form identically zero are just the symplectic manifolds (see
e.g.[9,23).

In a similar way that for contact manifolds, the Jacobi structureE) associated to a
l.c.s. manifold(M, §2) with Lee 1-formw is given by

A, B) = 20 o), b7 2B), E=>"Yw) (2.2)

for all «, B € 21(M), whereb : X(M) — 21(M) is the isomorphism o€ (M, R)-
modules defined by(X) = ix 2 (se€[9]).

Unit sphere of a real Lie algebrd.et (g, [-, -]) be areal Lie algebra of dimensiarand
let A be the Lie—Poisson 2-vector on the dual vector sggcef g. Suppose that., -) is
a scalar product op and thatg is the corresponding Riemannian metric goriJsing the
linear isomorphisme. ., : g — g* given byb,. ., (§)(n) = (&, n), forall &, n € g, and the
Lie—Poisson structurd, we can define a Poisson structuregowhich we also denote by
A. Now, we consider the 2-vectot’ and the vector fieldE’ on g given by

A =A—ANigA, E' =iyA, (2.3)

whereA is the radial vector field og and« is the 1-form defined by (X) = g(X, A), for
X € X(g). Thus, the paixA’, E’) induces a Jacobi structure gnMoreover, ifS"~1(g)
is the unit sphere in, it follows that the restrictionst and E to S~ 1(g) of A’ andE’,
respectively, are tangent 8 ~1(g). Therefore, the paifA, E) defines a Jacobi structure
on S"1(g) (se€f20]). In fact, (A, E) is a Poisson structure if and only(f -) is invariant
under the adjoint representation Ad x g — g.

On the other hand, letM, A, E) be a Jacobi manifold. Define a homomorphism of
C>®(M, R) modules # : 21(M) — X(M) by

(#a(@)(B) = Ala, B) (2.4)

for a, B € 21(M). This homomorphism can be extended to a homomorphism, which we
also denote by #, from the space&2* (M) onto the spac®* (M) by putting

#a(f) = f, #a@) (a1, ..., ) = (—DXa#a(@r), ..., #alw)) (2.5)

for f € C®°(M,R),a € 2¥(M) anday, ..., a, € 2Y(M).
If fis aC real-valued function on a Jacobi manifdld, the vector fieldX ; defined
by

Xy =#a(df) +TE

is called theHamiltonian vector fielédissociated witlf. Now, for everyx € M, we consider
the subspacé, of T, M generated by all the Hamiltonian vector fields evaluated at the point
x. In other words,F, = (#4)x(T;"M) + (E,). SinceF is involutive, one easily follows
that F defines a generalized foliation in the sense of Sussn22inwhich is called the
characteristic foliation(see[4,9]). Moreover, the Jacobi structure #f induces a Jacobi
structure on each leaf which is a contact or a l.c.s. struc{dr®]). If M is a Poisson
manifold then the characteristic foliation &f is just thecanonical symplectic foliatiorof
M (see[25,28).

To finish this section, we recall the definition of the Lie algebroid structure associated
with a Jacobi manifold.
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Let (M, A, E) be a Jacobi manifold. I[10], the authors obtain a Lie algebroid structure
([-» 1ca.E), #a, E)) on the vector bundlg (M, R) = T*M x R — M, where the ho-
momorphism ofC>® (M, R) modulesi#4, E) : I'(JX(M,R)) = Q1 (M) x C*®°(M,R) —
X(M) defined by

#a, E)(a, f) =#a(x) +TE (2.6)

is the anchor map and the Lie bracketl 4.z : (21(M) x C®(M, R))? — 2Y(M) x
C>° (M, R) is given by

[, ), B, Oa.E) = Liy)B — Laypyo — d(Ale, B)) + fLEP — gLEQ
—ip(a A B), a(#a(B) +#a()(g) — #a(B)(f)
+fE(g) — gE(f)). (2.7)

In fact, if A is a 2-vector andt is a vector field on a manifold/, we can consider the
homomorphism ofC®(M, R) modules(#, E) : 21 (M) x C®°(M,R) — X(M) and
the bracket [ -J(a.r) : (21(M) x C®*(M,R))? — 2%M) x C®(M,R) defined as
in (2.6) and (2.7) respectively. Then(A, E) is a Jacobi structure oM if and only if
(-, 1ca.E). #a4, E)), is a Lie algebroid structure aft(M, R).

In the particular case whei1, A) is a Poisson manifold we recover, by projection on
the first factor, the Lie algebroid associatedo(see[1,3,5,25).

3. Lichnerowicz—Jacobi cohomology and conformal changes

Let (M, A, E) be a Jacobi manifold. Denote lpy -} its associated bracket. We consider
the cohomology comple¢Cy,-c(M), 9y ) of the Lie algebraC> (M, R), {-, -}) relative to
the representation defined by the Hamiltonian vector fields, that is,

C®(M,R) x C*(M,R) - C*(M,R), (f, 8 — Xr(g).

Its corresponding cohomologhl;~c(M) is called theH-Chevalley—Eilenberg cohomol-
ogy associated td/ (see[13-15). Note that for a Poisson manifold, H,~c(M) is the
Chevalley—Eilenberg cohomology the Lie algebraC* (M, R), {-, -}) (see[18]). How-
ever, for arbitrary Jacobi manifolds, the Chevalley—Eilenberg cohomology (which is defined
with respect to the representation given by the Jacobi brd&R$t does not coincide in
general with the H-Chevalley—Eilenberg cohomology.

An interesting subcomplex of the H-Chevalley—Eilenberg complex is the complex of
the 1-differentiable cochains. Acochainc e Clﬁce(M) is said to be Mdifferentiableif
it is defined by ak-linear skew-symmetric differential operator of order 1. Then, we can
identify the spac&*(M) & V*~1(M) with the space of all 1-differentiable-cochains
bCﬁCE_ldiﬁ (M) using the isomorphisni* : VE(M) @ VE1(M) — Clicp1q4ir (M) given

y

P, O frs s i) =PAfr, ..., dfe)
k
+ > DT 0d Ay d ). (3.1)

q=1
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Under this identification, we have a new cohomology comglex(M) & V*~1(M), o),
where the cohomology operateris defined by

o(P,Q)=(—[A,P]+KEAP+AANQ,[A,Ql—(k—DEAQ+IE, P])
(3.2)

for all (P, Q) € V¥(M) @ V¥~L(Mm). The cohomology of this complex will be called the
Lichnerowicz—Jacobi cohomologly cohomologyof M and denoted byi*;(M, A, E) or
simply by H*;(M) if there is not danger of confusion (sget,15)). This cohomology is a
generalization of the Lichnerowicz—Jacobi cohomology introducddl2riL3] In fact, the
former one is the cohomology of the subcomplex of the p@r0), whereP is invariant
by E. For this reason, we retain the name.

Moreover, if(J1(M, R), [-, -] (A,E), (#4, E))isthe Lie algebroid ovel! (seeSection 2,
then, in[26] it is proved that the LJ cohomology &1 is just the Lie algebroid cohomology
of J1(M, R) with trivial coefficients (for the definition of the Lie algebroid cohomology
see, for instancg21]).

Next, we will prove that the LJ cohomology is invariant under conformal changes.

Let (A, E) be a Jacobi structure avi. A conformal changef (A, E) is a new Jacobi
structure(A,, E;) on M defined by

Ay =aA, E, = X, =#4(da) + aE, (3.3)

a being a positiveC* real-valued function o/ (see[4,9]). Moreover, we have the fol-
lowing theorem.

Theorem 3.1. The LJ cohomology is invariant under conformal changes of the Jacobi
structure

Proof. Let(M, A, E) be a Jacobi manifold andi,, E,) a conformal change of the Jacobi
structure(A, E). We define the isomorphism of vector bundfes7*M xR — T*M x R

by

dlag, h) = (iax +ad <3> ), L) for @y € T*M and . € R.  (3.4)
a(x) a a(x)

Adirectcomputation, usin@.6), (2.7), (3.3) and (3.4proves thap defines anisomorphism
between the Lie algebroidd*M x R, [, 1¢a.£), #a, E)) and(T*M x R, [-, 1 (a,.E,)
(#4,, E,)) associated with the Jacobi structu¢els E) and(A,, E,), respectively. There-
fore (seq21]), it follows thatH}y(M, A, E) = H}5(M, A, E,), for all k. O

4. Examples
4.1. Poisson manifolds

Now, let(M, A) be a Poisson manifold and letbe the LJ cohomology operator. Denote
by 6 the cohomology operator of the subcomplex of the p@s0). Under the canonical
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identificationV* (M) & {0} = V¥ (M), we have thas (P) = —[A, P]. The cohomology of
the complexV*(M), &) is called theLichnerowicz—Poisson cohomolofyP cohomology)
of M and denoted by'x(M) (se€[18,25).

In [18] (see als¢17]), Lichnerowicz has exhibited the relation between the LJ cohomol-
ogy (the 1-differentiable Chevalley—Eilenberg cohomology in his terminology) and the LP
cohomology of a Poisson manifoldZ, A). In fact, he proves that if dierP(M) < 00,
for all k, then the LJ cohomology groups have finite dimension and

H{p(M)
Im Lk=2

HEy (M) = @ ker L1, 4.1)
whereL* : Hlo(M) — HFS?(M) is the homomorphism given by*[P] = [P A 4], for
all[P] € H (M),

Symplectic structurdf (M, £2) is a symplectic manifold of dimensiom?and finite type
then the map # : 2¥(M) — V¥(M) induces an isomorphism betwegt, (M) and the
de Rham cohomology groufi;z(M) (see[18,25). Under this identification, we have that

HY (M
dr( )@kerLk‘l, 4.2)

k ~
HLM) = =

where nowL* : HX (M) — HAT2(M) is the homomorphism given by ([a]) = [« A £2],
for all [o] € Hiz(M) and 0< k < 2m.

Lie Poisson structureLet A be anexact Poisson structuren a manifoldM, that is,
there exists a vector field on M such thatA = 6A = —LaA. Then, Hf (M) =
Hlo(M) & Hip (M) (seef18)). _

Now, suppose that is a real Lie algebra of dimensionand thatA is the Lie—Poisson
structure org*. SinceA is exact, it follows that

Hy(8") = Hlp(") @ Hi5 (@) (4.3)
Moreover, ifg is the Lie algebra of a compact Lie group,[ifj the authors proved that
HlS (g% = HY (g) ® Inv, (4.4)

whereH *(g) is the cohomology of relative to the trivial representation gionR and Inv
is the algebra of alCasimir functionson g*, that is, Inv= {f € C*(g*,R)/X; = 0}.
Therefore, from4.3) and (4.4)we conclude that for the Lie algebgeof a compact Lie

group

Hl(g%) = (H (g) ® Inv) @ (H*Y(g) ® Inv).
4.2. Contact manifolds

In order to give an explicit description of the LJ cohomology of a contact manifold, first,
we will obtain a general result for Jacobi manifolds which relates the de Rham cohomology
and the LJ cohomology.
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Let (M, A, E) be a Jacobi manifold. Denote by # 22X (M) — V*(M) the homomor-
phism of C*°(M, R) modules given by2.4) and (2.5)Then, we have (sg&2,13)):

Lg#Hp(@) =#4(LE),
C[A, #4(@)] + KEA #4(a) = —#4(da) + #aliga) A A (4.5)

forall « € £2%(M). Using(2.1), (3.2) and (4.5we deduce the following result.

Proposition 4.1. Let (M, A, E) be a Jacobi manifold and* : 2K(M) @ ¥ 1(M) —
V(M) & V¥~1(M) the homomorphism @ (M, R) modules defined by

F(a, B) = (#a(@) + E A#4(B), —#alipa) + E A#A(EP)), (4.6)
for all « € 2X(M) andg € 2*~1(M). Then the homomorphism&* induce a homomor-
phism of complexek : (2*(M), —d) @ (2*~ (M), d) — VE*M)®V*1(M), o). Thus
if Hjz(M) is the de Rham cohomology of e have the corresponding homomorphism in
cohomologyF : Hio(M) @ Hiz (M) — H5(M).

Now, let (M, n) be a contact manifold and, E) its associated Jacobi structure. The
isomorphism ofC>® (M, R) modulesb : X(M) — 2Y(M) given byb(X) = ix(dn) +
n(X)n, can be extended to a mapping, which we also dendtgfliym the spac®* (M) onto
the space2X (M) by puttingb(X1 A --- A Xz) = b(X1) A--- Ab(Xp), forall Xq, ..., Xx €
X(M). This extension is also an isomorphism@F (M, R) modules. In fact, it follows that

#ra = (=D o) + E A#aipa) 4.7

for o € 2%(M) (see[13]). Moreover, we have the following result.

Theorem 4.2. Let (M, n) be a contact manifold of dimensi@m + 1. ThenH,fJ(M) =
HAL (M) ® HEZH (M), for all k.

Proof. Using(4.6) and (4.7xnd the fact thatg o b = b o i,, we deduce that the homo-
morphism ofC*® (M, R) modulesG* : V¥(M) & V¥Y(M) — 2KM) @ 251 (M) given
by

G (P, Q) = (=D (O(P) +nAD(Q) —n Ab(iy P)), (1)} (iy P)—n A D(iy Q)))

is just the inverse homomorphism dof* : QM) & 21w — VWM @
VL. O

Remark 4.3. In [17], Lichnerowicz showed that the 1-differentiable Chevalley—Eilenberg
cohomology of a contact manifold is trivial (compare this result Witkeorem 4.2

4.3. Locally conformal symplectic manifolds
In this section, we will study the LJ cohomology of a l.c.s. manifold. First, we will obtain

some results about a certain cohomology, introduced by Guédira and Lichneféyvicz
which is associated to an arbitrary differentiable manifold endowed with a closed 1-form.
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Let M be a differentiable manifold anda closed 1-form oM. Define the cohomology
operator ¢ by (se€9])
dy = d+ e(w), (4.8)
d being the exterior differential andw) the operator given by
e(w)@)=wAra foral a e 2%(M). (4.9

Denote byH (M) the cohomology of the comple2* (M), d,,).

Proposition 4.4. Let M be a differentiable manifold anda closedl-form on M. Then

(i) The differential comple2*(M), d,,) is elliptic. Thusif M is compact the cohomology
groupsHu’j(M) have finite dimensian
(i) If wis exact thedX (M) = HA(M).

Proof.

() Itis easy to check that the differential operators d agdhdve the same symbol which
implies that the complek2*(M), d,) is elliptic.

(ii) A direct computation proves that ib = df, with f a C* real-valued function on
M, then the mapping : HA;(M) — HE(M), given by¢([]) = [e/«], is an
isomorphism. 0

If the 1-formw is not exact then, in generall; (M) 2 Hiz(M). In fact, we will show
next that ifM is compact and is non-null and parallel with respect to a Riemannian metric
on M, then the cohomologyZ;} (M) is trivial. First, we will recall some results proved by
Guédira and Lichnerowici®] which will be useful in the sequel.

Suppose tha¥ is a compact differentiable manifold of dimensienthate is a closed
1-form onM and thatg is a Riemannian metric. Consider the vector figlén M charac-
terized by the condition (X) = g(X, U), forall X € X(M). Denote by the codifferential
operator and byy the contraction by the vector field, that is (se¢8]),

Sa = (=)™ (% o d o %) (),
iv(@) = (=)™ (k0 e(w) o k) (@) for a € 2FM), (4.10)

* being the Hodge star isomorphism. Then, we define the opesatar (M) —
25 1(M) by (se€l9])

=8 +iy. (4.11)

Now, consider the standard scalar prodgct) on the space2* (M):
(-, ) 1 25M) x 2FM) — R, (@, B) — (a, B) :/ o A k.
M

Then, it is easy to prove thédl,«, 8) = («, 8,8), for alla € 2¥~1(M) andp € 2K(M)
(se€[9]). Thus, sinceM is compact and the compléR* (M), d,) is elliptic, we obtain an
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orthogonal decomposition of the spa@é (M) as follows:
2K M) =My (M) ® dy (2 H(M)) @ 8,(2°TH(M)), (4.12)

WhereH’;,(M) = {a € 2KM)/dy(a) = 0, 8, (a) = 0} (see[9]). From(4.12) it follows
that

HE (M) = HE (m). (4.13)

Now, we will prove the announced result about the triviality of the cohomolggyM).

Theorem 4.5. Let M be a compact differentiable manifold awda closedl-form on M
w # 0. Suppose that g is a Riemannian metric on M such ¢histparallel with respect to
g. Thenthe cohomology? (M) is trivial.

Proof. Sincew is parallel and non-null it follows thatw|| = ¢, with ¢ constantc > 0.
Assume, without the loss of generality, tleat 1. Note that ifc # 1, we can consider the
Riemannian metrig’ = c?g and it is clear that the module efwith respect teg’ is 1 and
thatw is also parallel with respect tg.

Under the hypothesis= 1, we have that

oU) =1 (4.14)
Using thatw is parallel and that/ is Killing, we obtain that (seé4.10)and[8])

Ly =—80e(w) —e(w) o8, (4.15)

8oLy =Lyos. (4.16)
From(4.8)—(4.11), (4.14) and (4.18)e deduce the following relations:

Oy 0 iy = —iy 0 dy + Ly + 1d, 80 0y = —iy 08y, (4.17)

dy o Ly = Ly o dy, 8w oLy =Ly 0dy, (4.18)

where Id denotes the identity transformation.
On the other hand4.15)implies that(Ly o, @) = — (o, diga + iy da) = — (o, Lya),
forall o« € 2%(M). Thus,

(Lya,a) = 0. (4.19)

Now, if &« € HX (M) then, using(4.17) we have thallya = —a + d,(iya). But, by
(4.18) we deduce thafy«a € H’;(M). Therefore (seé4.12), we obtain thal yo = —«a.
Consequently, fronf4.19) it follows thate = 0. This proves thaH’;(M) = {0} which
implies thatHX (M) = {0} (see(4.13). O

Next, we will obtain some results which relate the LJ cohomology of a I.c.s. manifold
M, the cohomologyd (M) (w being the Lee 1-form o#f) and the de Rham cohomology
of M.

Let (M, £2) be al.c.s. manifold with Lee 1-form. Suppose thatA, E) is the associated
Jacobi structure oM and that> : X(M) — £21(M) is the isomorphism o€ (M, R)
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modules defined by(X) = ix $2. The isomorphism : ¥(M) — £21(M) can be extended
to a mapping, which we also denote Inyfrom the spac&* (M) onto the spac&* (M)
by putting:b(X1 A --- A Xi) = b(X1) A -+ Ab(Xy), forall X1, ..., Xy € X(M). This
extension is also an isomorphism®% (M, R) modules. In fact, we have that (SE8])

#aa = (-1 @) forall « € 2M), (4.20)

where # : 2%(M) — V¥(M) is the homomorphism given k.4) and (2.5)
Using(2.2), (2.4), (2.5), (4.20and the fact that #(w) = —E, we obtain

#oro0ip =i, 0H#y, igob=—=boi,. (4.21)
Thus, from(4.5), (4.20) and (4.21we deduce that
—b[A, P] + ko AD(P) = db(P) —ig(b(P)) A £2, LeD(P) =b(LeP) (4.22)

for all P € V¥(M). Now, suppose that* : 2KM) — VM) @ VF-1(M) andG* :
VEM) @ V(M) — 2%1(M) are the homomorphisms 6F°(M, R) modules defined
by

F*(@) = (#aa, —#a(iga)) and GX(P, Q) = (=D)*(—b(Q) + igb(P))

foralla € 2%(M) and(P, Q) € VX(M) @ V*=1(M). Then, using2.2), (3.2), (4.5), (4.8)
and (4.20)—(4.22)we prove that the mappings® and G* induce an exact sequence of
complexes

0— (2*(M), d)i(V*(M) o V*1(m), —U)—G>(.Q*_1(M), —d,) — 0,

where d is the exterior differentiad; the LJ cohomology operator ang, is the operator
given by(4.8). Thus, one induces a long exact cohomology sequence

X FE Gt 1 L1
-+ = Higg(M)=3 H/5(M)3 Hy M (M) > Hgt ™ (M) — -+,

with connecting homomorphismh*—* defined byL1([«]) = [a A £2], for all [«] €
HX=1(M). Therefore, we have the following result.

Theorem 4.6. Let(M, £2) be al.c.s. manifold of finite type with Lé&dorm » and suppose
that the dimension aff* (M) is finite for all k. Then

Hr(M)

im LF=2 @ ker L1,

HF (M) =

Using Theorems 4.5 and 4#@ndProposition 4.4we deduce the following corollaries.

Corollary 4.7. Let (M, £2) be a g.c.s. manifold of finite type with L&édorm » = df.
Then

Hiz ()
Im Lk=2

Hl (M) = @ ker LF1,
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for all k, whereH;r(M) is the de Rham cohomology of M ahtl : Hjr(M) — HéFng(M)
is the homomorphism defined by[a] = [e™/« A £2], for all [a] € Hlx(M).

Corollary4.8. Let(M, £2) be acompactl.c.s. manifold with Lédormw, w # 0.Suppose
that g is a Riemannian metric on M such thats parallel with respect to g. Then

Hly (M) = HigM)  forall k.

Remark 4.9. If (M, £2) a g.c.s. manifold with Lee 1-form = df and (A, E) is the
associated Jacobi structure, then the 2-feem= e~/ 2 is symplectic. Thus, the Jacobi
structure(A, E) is a conformal change of the Poisson structdren M associated with
the symplectic 2-forns2. More precisely, we have that = e/ A andE = #;(d(e™/)).
Thus,Corollary 4.7follows directly from(4.2)andTheorem 3.1

Example4.10. Let (N, n) be a contact manifold.
1. Consider on the product manifodd = N x R the 2-forms2 given by

£2 = (pry)*(dn) — (pry)™(dr) A (pry)*(m),

wheret is the usual coordinate di and pf (i = 1, 2) are the canonical projections of
M onto the first and second factor, respectively. THan, £2) is a g.c.s. manifold with
Lee 1-formw = (pr,)*(dr). Moreover, in this case, the symplectic 2-foftn= e~/ 2
is exact which implies that the homomorphigrhis null, for all . Consequently, using
Corollary 4.7 it follows that H; (M) = HAL(M) @ Hix (M) = Ho(N) @ HiRH(N).

2. Assume thaiV is compact and consider on the product maniftdd= N x S? the
2-form §2 defined by

£2 = (pry)*(dn) — (pro)*(0) A (pry)*(m),

6 being the length element 6t. Then,(M, £2) is al.c.s. manifold with Lee 1-form =

(pry)*(0). Furthermore, if: is a Riemannian metric oN, the 1-forme is parallel with
respect to the Riemannian metgion M given byg = (pry)*(h) + o @ w. Therefore,
usingCorollary 4.8 we deduced/;(M) = HEL(M) = HAL(N) @ HiZH(N).

4.4, The unit sphere of a real Lie algebra

If (g,[-,-]) is areal Lie algebra of dimensianendowed with a scalar produgt -), then
the unit sphere of, S"~1(g), admits a Jacobi structure (sBection 3. In this section, we
will describe the LJ cohomology of the sphere for the case wghisrthe Lie algebra of a
compact Lie group.

First, we will prove some results which will be useful in the sequel.

Lemma4.11. If € € gandé : $" 1(g) x R — R is the realC>°-function given by
E@O.1)=¢€(0), (4.23)
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for all (0,1) € " 1(g) x R, thend&/ar = £. Moreover if {&;};,—1.__, iS a basis ofy we

,,,,,

Proof. Let F : g — {0} — S"1(g) x R be the diffeomorphism defined by (&) =
E/I€Nl, In|I€]). Then, we deduce thab F = (£, -), forall ¢ € g, where(&, -) : g— {0} —
R is the real function given by, -)(8) = (&, 0), forall € g— {0}. This proves the second
assertion ofemma 4.11

The equatiord& /31 = £ follows directly from(4.23) O

Now, we will describe the LJ cohomology 6f*~1(g) for the case wheg is the Lie
algebra of a compact Lie group.

Theorem 4.12. Letg be the Lie algebra of a compact Lie group G of dimension n. Suppose
that (-, -) is a scalar product oy and consider on the unit sphe&~1(g) the induced
Jacobi structure. ThenH,fJ(S"*l(g)) ~ H*(g) ® Inv, for all k, where H*(g) is the co-
homology ofg relative to the trivial representation af on R and Inv is the Lie subal-
gebra of C*°(S"~1(g), R) defined byinv = {9 € C®(S"1(g),R)/X((p) = O,Vf €
C>(S"H(g). R)}.

Proof. Under the canonical identification defined by the scalar product betyaedg*,
the coadjoint action Ad: G x g* — g* induces an action of the Lie groug on g,
which will denote byAd™. Thus, we can define an action@fon the unit spher§"~1(g),
Ad": G x §"Y(g) - $""(g), given byAd (g, £) = Ad"(g. )/ Ad" (g, £)]|. This last
action induces a representationgadn the vector spac€>(S”~1(g), R) defined by

(€. 9) €gx CO(S" 1) R) = &gu-11)(9) € C¥(S"H(9). R),

&gn-1() being the infinitesimal generator, with respectto the adion associated to e g.
Moreover, using a result if20], we deduce thags.-1,, is the Hamiltonian vector field on

$"~1(g) associated to the functiog, -) : $"~1(g) — R given by (£, -)(n) = (&, n), that
is,

sSnfl(g) = X, (4.24)

The above representation allows us to consider the differential corf@tey; C°(S"1(g),
R)), 3) and its cohomology?*(g; C*®°(S"1(g), R)).

We will show thatfHF;(S"(g)) = H*(g; C*(S"~1(g), R)), for all k.

LetCfce(S"1(g)) be the space df-cochains in the H-Chevalley—Eilenberg complex of
5"~1(g). We define the homomorphispf : Cfce(S"1(g)) — C*(g; C*(S" (), R))
by

W N EL B = UEL ), E ) (4.25)

forall ¢t e Cfoe(S"1(g)) andéy, ..., £ €g.
Now, consider the homomorphism 6/°(S"~1(g), R) modules

ok VR () @ V(s H(g)) — CF(g; (5" L(g), R))
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defined by
ok = ko j*, (4.26)

JF VRS ) @ V(s H(g) — CFee(S"1(9)) being the mapping given K. 1)
A direct computation shows that

(®*(P, Q) (1, . .., &) (&)
= P(d<$1? ‘>7 cees d(skv >)(§)

k
+ 3 DHE £ QM(EL ). - A ). dEL D E)

i=1
= (P, Q)(déy. ... dE)(E. 0) (4.27)

forall (P, Q) € V¥(S"L(g)) ® V15" L(g)), &1, ..., & € g ands € S"(g), where
& (i =1,..., k)isthe function ors”~1(g) x R given by(4.23)and(P, Q) is thek-vector
onS"1(g) x R defined by

(P, Q) =eM (P +—A Q) (4.28)

On the other hand, if-, -} is the Jacobi bracket o”~1(g), then using(2.3) and the
expression of-, -} in terms of global coordinates grobtained from an orthonormal basis,
one can prove that forafl, n € g

{(€.). ¢ = ([§. nl. -

This fact, (4.24) and (4.25)mply that the mappingg* induce a homomorphism be-
tween the complexe€C},ce(S"~1(g)), 3x) and (C*(g; C*(S"(g), R)), 3). Thus, the
mappings®* induce a homomorphism between*(S"~1(g)) ® V*~1(5"1(g)), o) and
(C*(g; C* (5" 1(g), R)), 3) (see(4.26)and results of th&ection 3.

To show that®* is a monomorphism, we ' suppose theett (P, Q) = 0. Then from
(4.28) and Lemma 4.11 it follows that, /ja/at(P Q) = —k(P 0), and (8/8t)((P 0)
(dEq, ..., d&)) =0, foralléy, ..., & € g, whereg; (i = 1, ..., k) is the realc*°-function
on $"~1(g) x R given by(4.23) Therefore, using these facts af#27), we deduce that
0= (P,0)=e P+ (3/3r) A Q). Thus,P =0 andQ = 0.

Next, we will see tha®* is an epimorphism. Let : gx-- k... xg — C®(5" 1(g), R)
be aC> (5" 1(g), R)-valuedk-cochain. We define &-vectorR on S"~1(g) x R charac-
terized by the condition

R(dEy, ..., dE) (€, 1) = €YK (&, ..., 80 (8) (4.29)

foralléy, ..., & egand(&, 1) e $"1(g) x R.
FromLemma 4.11and(4.29) we deduce thar is well-defined and thaf;,; R = 0.
This implies that

9
R=P+ 0. (4.30)
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with (P, Q) € V¥(S"1(g)) @ V¥"1(S"~1(g)). Moreover, from(4.27)—(4.30)it follows
that®* (P, Q) = k. Thus,®* is an epimorphism.

Therefore, we conclude thét;(S"~1(g)) = H*(g; C*(S"~1(g), R)), for all k.

Now, if we apply a general result of Ginzburg and Weinstein (see Theorem $73; of
see alsd27]), we obtain thatf*(g; C>*(S"1(g), R)) = H*(g) ® Inv, wherelnv is the
algebra ofG-invariant functions ors*~1(g) with respect to the actioAd .

Finally, from (4.24)and since the characteristic foliation ®f ~(g) is generated by the
set of Hamiltonian vector fieldsX ¢, /& € g}, we deduce thdhv = Inv. O
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